

有机无机复混肥对水稻生长及产量的影响

泰兴市农业技术推广中心 马晓燕 鞠建勇 姚 琴 陈国军

摘 要: 为研究有机无机复混肥对水稻生长及产量的影响,本试验设置无肥处理(CK1)、常规施肥处理(CK2)、供试肥料 80kg(F1)、供试肥料 100kg(F2)、供试肥料 80kg+尿素 5.2kg(穗肥)(F3)、供试肥料 100kg+尿素 9.6kg(穗肥)(F4)、供试肥料 100kg+过磷酸钙 25kg+氯化钾 8kg(F5)、供试肥料 100kg+过磷酸钙 25kg+氯化钾 8kg(穆肥)(F6)、比较不同处理的生物性状和产量指标,结果表明:第一分蘖期,F2 的根长表现最优异,比CK2 增加 2.1%;F6 的叶面积、地上鲜重表现最优异,分别比CK2 增加 22.7%、22.6%;F5 的地下鲜重表现最优异,比CK2 增加 4.3%。破口期,F6 的根长表现最优异,比CK2 增加 6.7%;F5 的地上鲜重、地下鲜重表现最优异,分别比CK2 增加 11.8%、8.3%。产量指标方面,F6 的茎秆直径、穗数、总粒数、实粒数、理论产量表现最优异,分别比CK2 高 9.5%、2.4%、0.7%、3.7%、8.4%;F4 在株高、穗长、千粒重方面表现最优异,分别比CK2 高 0.9%、1.9%、3.2%;F3 在结实率方面最优异,比CK2 高 4.1%。

关键词: 水稻; 不施肥; 常规施肥; 有机无机复混肥; 生物性状; 产量指标

长期以来,我国农业生产普遍存在盲目施肥、过量施肥等现象,导致肥料利用率极低、农业面源污染严重等问题。有机无机复混肥是一种既含有机质又含适量化肥的复混肥,它是对粪便、草炭等有机物料,通过微生物发酵进行无害化和有效化处理,并添加适量化肥、腐殖酸、氨基酸或有益微生物菌,经过造粒或直接掺混而制得的商品肥料。目前,相关研究表明,我国肥料利用率只有30%~35%,有机无机复混肥的施用,可使氮肥的利用率提高到40%~45%。同时有机无机复混肥能减少化肥的使用,减少农业面源污染,提高土壤中的养分含量,有机无机复混肥中的腐殖酸、氨基酸或有益微生物,可优化农作物生长的环境。因此本试验设置了不同施肥量的有机无机复混肥试验,比较各处理的生长指标和产量指标,为促进水稻科学施肥、提高肥料利用率提供依据。

一、材料与方法

(一)试验地概况

本试验在江苏省泰州市泰兴市分界镇进行,该镇为传统的水稻种植大镇,所选土地质地松软,肥力中等。土壤类型为砂壤土,理化性状为pH7.1、有机质含量 23.1mg/kg、全氮含量 132mg/kg、有效磷含量 21.1mg/kg、速效钾含量 94mg/kg。

(二)试材

供试水稻品种: 南粳 5055, 育秧后机插。试验肥料: N、P、K(12-0-3) 有机无机供试肥料(25%有机质)、45%NPK复合肥(15-15-15)、尿素(46%)、氯化钾(60%)、过磷酸钙(12%)。

(三)试验设计

试验共设 8 个处理: CK1 (不施肥); CK2, 常规施肥 (CK) (尿素 28.7kg, 复合肥 21.3kg, 钾肥 6.7kg); F1, 80kg有机无机复混肥,基施; F2, 100kg有机无机复混肥,基施; F3,基施 80kg有机无机复混肥、5.2kg尿素为穗肥; F4,基施 80kg有机无机复混肥、9.6kg尿素为穗肥; F5, 100kg有机无机复混肥、过磷酸钙 25kg、氯化钾

(60%) 8kg, 基施; F6, 100kg有机无机复混肥、过磷酸钙 25kg、氯化钾(60%) 8kg为穗肥。

施肥安排: 2021 年 6 月 4 日施基肥, 7 月 26 日撒施穗肥见表 1。

表 1 各外理施肥安排

农 1 日及廷旭儿文师							
处理	基肥	穂肥					
CK1	空白						
CK2	常规施肥						
F1	有机无机 12-0-3(25%有机质)	80kg					
	80kg 有机无机 12-0-3(25%有机质)						
F2	100kg						
F3	有机无机 12-0-3(25%有机质) 80kg	尿素 5.2kg					
F4	有机无机 12-0-3(25%有机质) 100kg	尿素 9.6kg					
F5	有机无机 12-0-3(25%有机质)100kg过磷酸 钙 25kg、氯化钾(60%)8kg						
F6	有机无机 12-0-3(25%有机质)100kg过磷酸 钙 25kg	氯化钾(60%)8kg					

田间管理: 2017年6月1日进行整地, 5月19日进行秧盘育苗, 6月5日移栽, 10月12日进行测产和取样。

(四)调查项目

对各处理的根长、叶面积、地上和地下鲜重以及茎 秆直径进行调查,成熟期对各处理的株高、穗长、穗 数、茎秆直径、粒数、结实率、千粒重等产量指标进行 调查。

(五)数据处理

通过Excel软件进行数据处理。

1.不同处理施肥纯量的计算见表 2。

表 2 各处理纯养分含量

处理	纯养分含量						
处理	N (kg/亩)	P ₂ O ₅ (kg/亩)	K ₂ O(kg/亩)				
CK1	0	0	0				
CK2	16.4	3.2	7.2				
F1	9.6	0	2.4				
F2	12	0	3				
F3	12	0	2.4				
F4	14	0	3				
F5	12	3	7.8				
F6	12	3	7.8				

2.不同处理两个时期生物性状数据的处理见表 3。 表 3 不同处理两个时期生物性状对比

	第一分蘗生长期				破口期				
处理	根长	叶面积	地上鲜	地下鲜	根长	叶面积	地上鲜	地下鲜	
	(cm)	(cm ²)	重 (g)	重 (g)	(cm)	(cm ²)	重 (g)	重 (g)	
CK1	8.03	2.0	0.39	0.263	27.5	17.80	1.62	2.28	
CK2	12.48	4.4	0.936	0.715	31.5	25.12	2.21	3.48	
F1	9.87	3.3	0.419	0.365	27.7	21.86	1.84	2.66	
F2	12.74	4.8	0.638	0.492	31.5	24.26	2.07	2.75	
F3	11.17	4.0	0.511	0.468	29.8	28.18	2.13	2.88	
F4	11.75	4.6	0.664	0.578	31.8	34.08	2.15	3.27	
F5	12.3	5.1	0.814	0.796	32.9	29.68	2.47	3.77	
F6	12.6	5.4	1.148	0.747	33.6	30.42	2.28	3.50	

3.不同处理产量指标数据的处理见表 4。

表 4 不同处理成熟期产量指标

	生物性状				产量构成					
处理	株高 (cm)	穗长 (cm)	茎秆 直径 (cm)	穗数 (万/ 亩)	总粒 数 (粒)	空瘪 (粒)	实粒 数 (粒)	结实 率%	千粒 重 (g)	理论 产量 (kg/ 亩)
CK1	88.2	14.03	0.67	18.2	87.4	3	83.4	95.42	20.3	308.13
CK2	96.3	16.01	0.74	20.6	122.3	6.9	115.4	94.36	24.7	587.18
F1	94.8	14.11	0.69	20.1	106.3	3	103.3	97.18	24.4	506.62
F2	95.7	12.69	0.69	20.2	117.7	2.7	115	97.71	24.1	559.84
F3	95.7	15.78	0.72	20.5	116.7	1.8	114.9	98.46	25.3	595.93
F4	97.2	16.32	0.77	20.9	121	4.2	116.8	96.53	25.5	622.49
F5	96.2	13.59	0.78	21.1	119.3	4.1	115.2	96.56	25.4	617.40
F6	97.1	14.19	0.81	21.1	123.2	3.5	119.7	97.16	25.2	636.47

二、结果与分析

(一)农艺性状

1.根长见图 1。

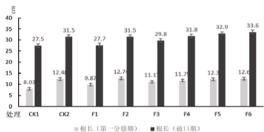


图 1 不同处理根长

由表3和图1可以看出,8个处理第一分蘖期平均根长为11.4cm,破口期平均根长为30.8cm。第一分蘖期各处理的根长从大到小依次为:F2>F6>CK2>F5>F4>F3>F1>CK1,破口期各处理的根长从大到小依次为:<math>F6>F5>F4>F2=CK2>F3>F1>CK1。

2.叶面积见图 2。

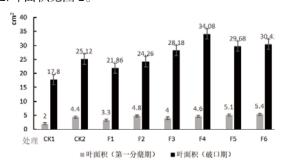
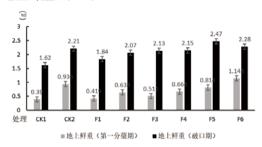



图 2 不同处理叶面积

由表3和图2可以看出,8个处理第一分蘖期平均叶面积为4.2cm²,破口期平均叶面积为26.43cm²。

第一分蘖期各处理的叶面积从大到小依次为: F6>F5>F2>F4>CK2>F3>F1>CK1, 破口期各处理的叶面积从大到小依次为: F4>F6>F5>F3>CK2>F2>F1>CK1。

3.地上鲜重见图 3。

图 3 不同处理地上鲜重

由表3和图3可以看出,8个处理第一分蘖期平均地上鲜重为0.69g,破口期平均地上鲜重2.10g。第一分蘖期各处理的地上鲜重从大到小依次为:F6>CK2>F5>F4>F3>F1>CK1,破口期各处理的地上鲜重从大到小依次为:F5>F6>CK2>F4>F3>F2>F1>CK1。

4.地下鲜重见图 4。

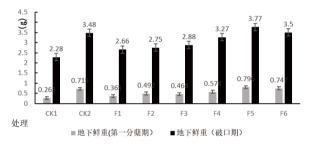


图 4 不同处理地下鲜重

由表3和图4可以看出,8个处理第一分蘖期平均地上鲜重为0.55g,破口期平均地上鲜重3.07g。第一分蘖期各处理的地下鲜重从大到小依次为:F5>F6>CK2>F4>F2>F3>F1>CK1,破口期各处理的地下鲜重从大到小依次为:F5>F6>CK2>F4>F3>F2>F1>CK1。

(二)产量指标

1. 生物量见图 5。

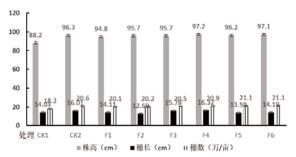


图 5 成熟期不同处理生物量指标

由表 4 和图 5 可以看出, 8 个处理株高平均值为95.15cm, F4 的株高最高, 为97.2cm, 分别比CK1、CK2 高 9cm、0.9cm, F6 次之为97.1cm; 平均穗长为14.59cm, F4 的穗长最长, 为16.32cm, 分别比CK1、

CK2 长 2.29cm、0.31cm; 平均穗数为 20.34 万/亩, F5、F6 的穗数最多,为 21.1 万/亩,分别比CK1、CK2 多 2.9 万/亩、0.5 万/亩。

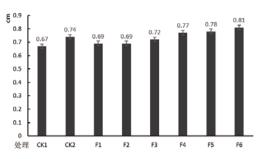


图 6 成熟期不同处理茎秆直径

由表 4 和图 6 可以看出,8 个处理茎秆直径平均值为 $0.73 \, \text{cm}$,F6 茎秆最粗,为 $0.81 \, \text{cm}$,分别比CK1、CK2 粗 $0.14 \, \text{cm}$ 、 $0.07 \, \text{cm}$ 。

2.产量。

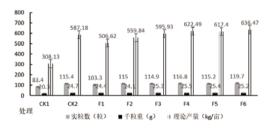


图 7 不同处理产量指标

由表 4 和图 7 可以看出,8 个处理实粒数平均值为110.5 粒,其中F6 的实粒数最多,为119.7 粒,分别比CK1、CK2 多 36.3 粒、4.3 粒; 千粒重平均值为 24.5g,其中F4 千粒重最重,为 25.5g,分别比CK1、CK2 多 5.2g、0.8g;产量平均值为 554.26kg/亩,产量最高的为F6,为 636.47kg/亩,分别比CK1、CK2 多 328.34kg/亩、49.29kg/亩。

三、小结与讨论

通过本次试验不难发现,施用有机无机复混肥的地块,特别是F6、F5表现优异,在生理性状和产量指标上均表现优异或与常规施肥持平,而总施肥量比常规施肥量要少。有机无机复混肥能够及时补充土壤有机质含量,改善耕地质量,改善土壤理化性质,增加作物产量。综合来看,施用有机无机复合肥能够调节土壤酸碱度,并减少化肥使用量,有利于实现化肥减量增产的效果。